
AI Networking workshop

Shrijeet Mukherjee
Nikolay Aleksandrov

Costin Raiciu



Why the hullabaloo over ML and networking
● HPC networking has existed for 

decades
○ Relatively a small targeted market with 

strict latency and overhead 
requirements

● Data Center (and Hyperscalar) 
networking had a different focus

○ Resiliency 
○ Aggregate bandwidth over wide 

compute area
○ Each flow/compute task was small and 

fit in a node

● ML changed that to 
○ Single fault domain compute with 

scale-out and scale-up needs



So what is being communicated

https://www.linkedin.com/pulse/explaining-multilayer-perceptrons-terms-general-matrix-ajit-jaokar-c5aje/



Matrix math : why we need to communicate

Merrill Sherman/Quanta Magazine



Matrix math with subdivisions : aka how we shard

Merrill Sherman/Quanta Magazine



Matrix math with subdivisions

Merrill Sherman/Quanta Magazine

Mat(a,b) X Mat(x,y) = Mat(a,y)

● Parallelize operations by replicating one 
matrix in all local memories and shard the 
other matrix across multiple compute 
elements

● The goal is to have all compute elements 
have the full matrix multiply result

● Implemented using 
○ Scatter-Reduce (above method)
○ And then All-Gather (broadcast)



Logical network topologies for ML

Node 1 

Node 2 

Node 3

Node 4

Node 1 

Node 2 

Node 3

Node 4

Ring Topology : 4 links
N links for N nodes

Mesh Topology : 6 links
N*(N-1)/2 for N nodes



Rings in practice

Node 0 Node 1 Node 3 Node 4

Rail switch 0 Rail switch 1



All-mighty reduce operations

Example has 4 nodes
● Each node has a 

partial sum
● Goal is to get each 

node the full set of all 
sums i.e the actual 
final matrix

This example shows the 
usage of a ring topology for 
optimal BW utilization

Node 1 

Node 2 

Node 3

Node 4

a0, a1, a2, a3

b0, b1, b2, b3

c0, c1, c2, c3

d0, d1, d2, d3



Phase 1
● Every node sends one 

of it’s local copies to 
one neighbor

● The index of the array 
sent is based on node 
location

Node 1 

Node 2 

Node 3

Node 4

a0, a1, a2, 
(a3+d3)

(a0+b0), 
b1, b2, b3

c0, (b1+c1),
 c2, c3

d0, d1, (c2+d2), 
d3

a0

c2 b1

d3

All-mighty reduce operations



Phase 2
● Each node sends the 

partial sums computed 
in the last phase to it’s 
next neighbor 

● Each node add’s the 
partial sum to it’s local 
value at the 
appropriate index

Node 1 

Node 2 

Node 3

Node 4

a0, a1, 
(a2+c2+d2)

 b1, b2, 
(a3+b3+d3)

(a0+b0+c0), 
 c2, c3

d0, (b1+c1+d1), 
d3

a3+d3

b1+c1 a0+b0

c2+d2

All-mighty reduce operations



Phase 3
● Each node has the full 

sum for one of the 4 
indices

● All that is missing is a 
broadcast/multicast to 
exchange all values 
with everyone else

Node 1 

Node 2 

Node 3

Node 4

a1+b1+c1+d1

 a2+b2+c2+d2

a3+b3+c3+d3

a0+b0+c0+d0

a2+c2+d2

a0+b0+c0 a3+b3+d3

b1+c1+d1

All-mighty reduce operations



The Basic’s of LLM’s 

https://poloclub.github.io/transformer-explainer/



Matmult where art thou

https://poloclub.github.io/transformer-explainer/



Mapping to “standard” DC scale-out networks

Node 
0 

Node 
1

Leaf 0

Node 
0 

Node 
1

Leaf 1

Node 
0 

Node 
1

Leaf 2

Spine 0 Spine 1

Classic Scale out networks

● Build for client server 
model

● Resiliency achieved by 
Software redundancy

● High Aggregate BW but 
not always per node pair

What is needed
● Very high inter node 

bandwidth 800g and 
above

● Very high link utilization 
using packet spray

● An application interface 
that allows direct HW 
access for the fastpath



Now “Rail optimized”

Node 
0 

Node 
1

Rail 0

Node 
0 

Node 
1

Rail 1

Node 
0 

Node 
1

Spine 0 Spine 1

Packet and Message level 
spraying is needed to avoid 
building rail optimized designs



Introducing Ultra Ethernet Consortium (UEC)

ultraethernet.org



Introducing Ultra Ethernet Consortium (UEC)

ultraethernet.org



UE Transport : basic building blocks



UE Transport : basic building blocks

Reliable Ordered Delivery (ROD): 
ROD delivers all packets associated 
with the same message in order and 
preserves inter-message ordering. 

Reliable Unordered Delivery (RUD): 
RUD’s innovative AI-optimized 
approach enables multi-path packet 
spraying by handling out-of-order 
delivery at the receiver without 
requiring a re-order buffer, resulting in 
high network utilization and minimal 
tail latencies.



Ultra Ethernet Linux kernel modules
● Ultra Ethernet core (ultraeth.ko)

○ UET context management
○ Job management
○ UET genetlink interface
○ Generic UET device management
○ IB verbs character device

● Ultra Ethernet software device model (uecon.ko)
○ Dependent on UE core (obviously)
○ Implements UET sublayers in software
○ Implements UET congestion management
○ UDP tunnel network device



Uecon : software Ultra Ethernet model
● uecon is a single UET driver implementing the UET specifications for communication, it will be separate 

from UET core (context mgmt, jobs mgmt, generic resource mgmt) which will end up in 
drivers/ultraeth/core/

○ think of it as a single software UET device driver that can be loaded and created on-demand

● Implement Packet Delivery Sublayer (PDS) specification
○ Responsible for dynamically creating Packet Delivery Contexts
○ Keeps track of PDC ids which are unique per-PDC
○ Responsible for packet delivery over IP/Ethernet network
○ Tx/Rx NACK packets for various events
○ Finds (or creates dynamically) PDCs on Rx/Tx based on endpoint addresses and unique PDC ids
○ Packet types: RUD/ROD/RUDI/UUD Request, RUDI Response, ACK, NACK, Control message

● PDCs are dynamic connections between two Fabric Endpoints (FEPs) 
○ Responsible for packet reliability, ordering, duplicate elimination and congestion management
○ Track Tx/Rx Packet Sequence Number (PSN) spaces
○ Support coalescing ACK (CACK) and selective ACK (SACK)
○ Can establish multiple PDCs between the same two FEPs
○ Have a specific mode: 

■ Reliable, Ordered Delivery (ROD)
■ Reliable, Unordered Delivery (RUD)
■ Reliable, Unordered Delivery for Idempotent Operations (RUDI)
■ Unreliable, Unordered Delivery (UUD)



Ultra Ethernet (ultraeth) driver flow

ultraeth kernel 
driver

privileged processnetlink 
context/job: 
NEW, DEL, 

LIST

app Open context char dev 
(/dev/ultraethX), 

associate job by service 
name and id, read/write, 

create queue, list ctxs/jobs 

create context 
character device 

/dev/ultraethX

create network tunnel 
device ueconXcreate job registry

create UET context

Netdev UDP socket



Code blocks and organization



UET code organization 

● Current (RFC set) state: all code together in linux/drivers/ultraeth/
○ PDS is part of UET context (will move to uecon)
○ uecon created dynamically with contexts (will be created only on demand)
○ custom character device created with contexts (use special UET IB verbs device)
○ New kconfig option: CONFIG_ULTRAETH
○ Netlink API for UET core resource management (e.g. context, job)

● Future:
○ UET core (contexts, jobs, generic UET resources): linux/drivers/ultraeth/core/
○ UET device drivers: linux/drivers/ultraeth/devices (TBD)
○ uecon moves to its own directory with PDS and all sublayers that are expected to be executed in hw, separate 

kconfig option (CONFIG_ULTRAETH_UECON)
○ uecon congestion management and additional UET sublayers
○ UET core <-> UET device in-kernel API
○ UET core <-> user-space API



Outstanding actions

● Get involved
● Need to leverage (and not rewrite) the RDMA layers

○ IB device, Fixed queue maps etc need slight tweaking
○ Memory management is entirely reusable
○ RFC patches being prepped that

● User and HW interfaces are mapped as libfabric
○ Kernel subsystem testing without libfabric will require work
○ In kernel implementation (e.g storage) is being examined


